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Abstract

This paper describes an approach to representing nor-
mal activities in a smart house based on the concept of anx-
iety. Anxiety is computed as a function of time and is kept
low by interactions of an occupant with the various devices
in a house. Abnormality is indicated by a lack of activity or
the wrong activity which will cause anxiety to rise ultimately
raising an alarm, querying the occupant and/or alerting a
carer in real-time. Anxiety is formulated using probabilis-
tic models that describe how people interact with devices in
combinations. These models can be learnt interactively as
the smart house acts pessimistically enquiring of the occu-
pant if what they are doing is normal. Results are presented
for a number of kitchen scenarios and for different formu-
lations of anxiety.

1 Introduction

There is a growing demand for techniques to help elderly
and infirm people live in their own homes safely. This pa-
per explores the issue of dealing with hazards in a home
generated by numerous appliances such as the stove being
unattended, the front door being left open, or the bath being
left running. The research makes extensive use of simple
sensors such as pressure pads, reed switches, current sen-
sors, simple flow sensors and control of devices via the X10
protocol.

The solution to modelling hazards requires the fusion of
the interaction of the occupant with the many sensing de-
vices. This involves learning typical patterns of activity of
the occupant which is complex because patterns of activity
have much variation in the sequence and sub-sequences of
events and because these can be interwoven. The question
is how to quantify such activities such that hazardous situa-
tions can be detected and the occupant warned. A novel ap-
proach is proposed that does not model sequences directly
but is focussed on regarding devices as hazardous and pas-
sive and measuring the anxiety for each hazardous device

and, potentially, groups of devices as well as for the whole
house (the anxious home). We use statistical models to
represent the interaction of the occupant with (1) the de-
vice (e.g. switching it on, opening the door), and (2) with
other devices while a particular device is in a potentially
hazardous state (e.g. while it is on).

The overall anxiety is computed in a probabilistic frame-
work that uses cumulative distributions for the expected pe-
riods between interactions with devices. The significance
of this approach is that it can detect multiple hazards with-
out the normal combinatorial explosion in state space. It
can also accommodate interwoven activities and activities
in which there is a lot of variability in the order of the sub-
activities.

The layout of the paper is as follows. First we review rel-
evant background material, followed by the rationale behind
this approach. We then formulate the statistical model used
to represent the state of the devices and the house. Finally
our simulated smart house is described and experimental
results presented for a number of simulated scenarios. We
show how different interactions with devices can be used to
alter the anxiety for other devices in meaningful and useful
ways.

2 Background

There has been much research in the area of smart house
technology. Some very simple devices have been developed
such as the Stove Guard1 that has current and motion sen-
sors and can turn off the stove after a certain time if it is
on (detects current) and is unattended (no motion). Many
other simple sensors have been used for recognising activ-
ity in houses [8, 2, 5]. Glascock and Kutzik [3] use a small
number of infra-red sensors for coarse activity monitoring
that is mainly suited for making sure someone has taken
medication, eaten etc. which only requires events to be re-
ported at two hour intervals. GE has described a system [4]
that uses many standard sensors (window and door sensors)

1www.absoluteautomation.com/stoveguard — accessed Feb’05.
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and a form of anxiety that rises if there is little activity in
the house compared with learnt activities. This differs from
the work presented here in that we are interested in the in-
teractions of various devices enabling richer semantics to
be inferred and monitored in real time enabling prompt re-
sponses to abnormal behaviour. Anxiety is an emotion in
the human sense and recently, much work has been carried
out into emotional computing [7], mainly to enable comput-
ers to communicate with humans. It is argued that decision
making by humans requires emotions and useful decision
making by computers requires similar attributes. We be-
lieve that anxiety is an important emotion for decision mak-
ing and especially for a smart house.

Activity recognition can be regarded as the recogni-
tion of patterns in multi-modal time sequences. Much re-
search has focussed on using various forms of Markov
model [1, 6]. In these methods, a model for an activ-
ity is constructed from many sequences of events (learn-
ing). HMMs model the temporal changes in state, and can
accommodate variations in the durations of each activity.
However they are sensitive to changes in the order of sub
activities and the interleaving of events.

3 Rationale

The main objective of this research is to model normal-
ity i.e. the normal activities of an occupant in their house.
What we desire is a measure that will be below a threshold
for normal activity but rises above the threshold for abnor-
mal activities. Importantly we do not want to model ab-
normality directly. Abnormality, almost by definition, is
not modellable because abnormal events rarely occur and
would not be statistically meaningful. The essential idea
proposed in this paper is that a device, when on, is in a
hazardous state until it is switched off. Such devices are
stoves, baths and fridges. The longer each device is left
unattended the more hazardous it should become e.g. leav-
ing a stove on for eight hours could be dangerous. We in-
troduce the concept of anxiety here to represent the time a
device is left unattended. When a device is turned on, its
anxiety is zero, but rises over time if it is not attended by
the occupant. Eventually when it reaches some threshold,
some action should be taken. An important issue is what
is meant by attended. This can be modelled in two ways;
(1) the device is directly interacted with (settings changed
or occupant adjacent e.g. standing on a pressure pad next to
the device), and (2) the device is observed from close range
e.g. opening the fridge that is near the cooker means the
occupant can check on the state of the stove easily or can
get to the stove within a reasonable time to interact with it.

Each of these should mean the anxiety of the device re-
duces instantaneously by some amount and then starts to
rise again. The second model can be thought of as a func-

tion of whether (1) the device is normally interacted with,
and (2) how far away it is. By normally interacted with, we
mean that, for example, when the stove is on, it is normal
to visit the fridge regularly. By how far away the device
is, we mean that interaction with near devices is more reas-
suring than with devices far away. For example, interacting
with the fridge that is near means it is easy to observe the
stove and the occupant can get to the stove quickly. Interact-
ing with the bath would mean it would take longer to reach
the stove and, normally, it would be difficult to observe the
stove from the bathroom.

To further illustrate the concept, consider a breakfast sce-
nario consisting of the following sequence of events:

• Occupant opens cupboard, takes cereal from cupboard,
closes cupboard, puts cereal on table.

• Occupant opens fridge door, takes egg and milk from
fridge, puts milk on table, put egg on stove to cook,
closes fridge door.

• Occupant sits down at table, eats breakfast.

• Occupant gets egg from stove, turns off stove, sits
down, eats egg.

There are two potentially hazardous situations here. The
first is leaving the stove on to boil the egg dry and then melt
the pan. The second is leaving the fridge open which would
spoil the food, use electricity and possible burn out the mo-
tor. There are also interleaved activities here i.e. the stove is
turned on while the fridge is open. Once the stove is turned
on, its anxiety will start to rise. The fact that the occupant
is nearby (by the table) should mean the anxiety should not
rise as fast as, say, if the occupant leaves the kitchen. As
long as the occupant checks on the stove regularly or fin-
ishes eating their cereal in time, the anxiety shouldn’t reach
the alarm level. When the occupant turns off the stove, the
anxiety for the stove should go to zero as it is not in a haz-
ardous state anymore. Once the occupant leaves the fridge
door open, the anxiety for the fridge should rise and reach
the alarm state. If the door is closed before it reaches this
state then anxiety reduces to zero and no alarm is signalled.

Note the kitchen could have an anxiety based on the anx-
iety of all the hazardous devices present in the kitchen. If
both the stove and fridge are in hazardous states and not at-
tended to, then the kitchen anxiety should be some form of
combination of these anxieties.

From the above description, it can be inferred that a num-
ber of parameters are needed to describe how anxiety works.
We take a learning approach to this through interacting with
the occupant as initially, only the occupant (or carer) will
really understand what is normal and abnormal. In this pa-
per we take a pessimistic approach to anxiety and choose
the worst case scenario. Such a scenario can occur when
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someone is standing in the kitchen for a long period of time
or has collapsed on the floor. Given that we are using de-
vice activities to infer intent, these two scenarios cannot be
separated so we assume the worst — they have collapsed.
Pessimistically, if we ask the occupant (or carer) if the anxi-
ety is okay (normal) when it exceeds a threshold, we can use
the information about the event to update the parameters.

4 Statistical Model for Anxiety

To formulate anxiety, we divide devices into two classes.
The first class consists of hazardous devices such as stoves,
the bath, the fridge. These devices have to be attended
to while they are in a hazardous state. The second class
consists of passive devices such as pressure pads and reed
switches on other devices. They usually belong to devices
for which there is no hazardous state. For example, a reed
switch on a cupboard is a passive device if it doesn’t matter
if the cupboard is left open or closed. A pressure pad would
not, by itself, have a hazardous state. Some hazardous de-
vices can be regarded as passive devices. For example, in
the context of the stove, the fridge is a passive device as it
is used to signal to the stove where the occupant is.

We have a number of statistical representations for the
devices:

For each hazardous device we have a statistical model
(called the Self Interaction Duration model: SID) in which
pdi

SID(t) denotes the probability density distribution of the
time intervals between interaction with the device di where
t is the time between interactions2. For example, if some-
one is cooking pasta, a occupant would check the stove ev-
ery minute or so. The resulting distribution would show a
peak around one minute. They would be less likely to check
every 10 seconds or every five minutes. From this distri-
bution, a cumulative distribution can be determined which
represents the probability P di

SID(t0, t) that the device should
have been interacted with between the time of last interac-
tion t0 and the time now t. The closer this probability gets
to 1.0 without interaction, the more anxious the device d i

becomes.
For each hazardous device, we also have a statistical

model (called the Interaction Event model: IE) in which
P

di,dj

IE denotes the probability of interaction of the occupant
with another device dj while the device di is in a hazardous

state. That is, when the cooker is on, P
stove,fridge
IE = 0.9

means that 90% of the times the cooker is on, the occupant
interacts with the fridge. A high value means this is more
likely to be a normal occurrence.

For each passive device dj we have a statistical model
(called the Inter Interaction Duration model: IID) that is

2In this paper P denotes probability, and p denotes probability density.

a distribution p
di,dj

IID (t) that describes the time intervals be-
tween interacting with the passive device dj and then with
the hazardous device di given that device di is in a haz-
ardous state. This is a distance function as well as a time
function because, assuming intent by the occupant, the in-
tervals will reflect the time it takes to get from one device
to another or the distance between them. Learning these
distributions reveals normal pathways through the house.
From this distribution, a cumulative distribution can be de-
termined which represents the probability P

di,dj

IID (t0, t) that
the device di should have been interacted with at time t
given that device dj was interacted with at time t0. The
closer this probability gets to 1.0 without interaction, the
more anxious the device di becomes.

Table 1. Various probabilities at each time
step for a simple example.

Stove Cupboard Overall
Time PDF CDF CDF PDF CDF CDF 1-G 1-G*0.7 D×I
mins cts cts norm cts cts norm

A B C D E F G H I J

0 0 0 0 0
1 5 5 0.030 0.030
2 10 15 0.092 0.09
3 15 30 0.18 0.18
4 20 50 0.30 0 0 0 1 0.3 0.30
5 25 75 0.46 0 0 0 1 0.3 0.46
6 24 99 0.61 0 0 0 1 0.3 0.61
7 20 119 0.73 2 2 0.05 0.94 0.34 0.25
8 15 134 0.82 5 7 0.20 0.79 0.44 0.36
9 12 146 0.90 10 17 0.5 0.5 0.65 0.58
10 8 154 0.95 10 27 0.79 0.20 0.85 0.81
11 5 159 0.98 5 32 0.94 0.05 0.95 0.94
12 3 162 1 2 34 1 0 1 1
13 0 162 1 0 34 1 0 1 1
14 0 162 1 0 34 1 0 1 1
15 0 162 1 0 34 1 0 1 1
16 0 162 1 0 34 1 0 1 1
17 0 162 1 0 34 1 0 1 1
18 0 162 1 0 34 1 0 1 1
19 0 162 1 0 34 1 0 1 1
20 0 162 1 0 34 1 0 1 1
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Figure 1. Graph of the main columns of Ta-
ble 1 showing anxieties for the stove (column
D), the cupboard (column I) and overall (col-
umn J).

How the various probabilities are used are shown in Ta-
ble 1 for a period of 20 minutes (column A). Column B

3
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shows pdi

SID(t) for a stove. This is a unimodal distribution
with a mean around five minutes and all interaction inter-
vals between one and 12 minutes. Column D shows the
cumulative distribution P di

SID(0, t) which rises from zero to

a maximum at 12 minutes. Column E shows p
di,dj

IID (t − 4)
for the cupboard given the stove is in hazard. The values
for time from zero to three minutes are not shown because
the cupboard dj was interacted with the fourth minute after

the stove di was last attended. Hence P
di,dj

IID (t) is not rel-
evant until the fourth minute. The distribution shows that
the mean time to interact with the stove after opening the
cupboard door is approximately six minutes. Column G
shows the cumulative distribution P

di,dj

IID (4, t) which rises
from zero to a maximum at 12 minutes. The probability of
interacting with the cupboard when the stove is in the haz-
ardous state P

di,dj

IE is defined to be 0.7 for this example.
The way the probabilities for the cupboard are used to mod-
ify the probability of the hazardous device is as follows. We
want the anxiety of the stove to reduce once the cupboard
has been interacted with and then rise again. The effect of
the cupboard on the anxiety should be removed if no inter-
action with the stove has occurred. To add in the affect of
the cupboard, the stove probability is modified by:

Sdi,dj (t) = 1.0 − (P di,dj

IE (1.0 − P
di,dj

IID (t))) (1)

Columns H and I show the calculations for S di,dj(t). The
probabilities are incorporated as:

P di

overall(t) = P di

SID(t − to) ×
∏

∀ej

Sdi,dj (t − tej ) (2)

where ej is an event for device dj and assuming that ej∀j
are independent of each other. One problem with this for-
mulation is that if the occupant repeatedly interacts with a
device, the anxiety for the hazardous device will keep on
reducing. This can be overcome by only using the latest
interaction. This can be argued for because once the latest
event occurs, all the previous events are not relevant. Then
the probability becomes:

P di

overall(t) = P di

SID(t − to) × Sdi,dj(t − tej ) (3)

Figure 1 shows plots over time for the anxiety of the
stove on its own, the cupboard, and the overall anxiety for
the stove. The overall anxiety rises until the cupboard is
interacted with after which it drops and then starts rising
again. Eventually the overall anxiety levels out at a proba-
bility of 1.0 signifying that no interaction with the stove has
taken place. Comparing the curves for the stove on its own
and the overall reveals the cupboard interaction increased

the time for a particular anxiety e.g. a value of 0.8 could be
when an alarm is raised.

Given that each hazardous device has its own anxiety,
there is a need to consider the overall anxiety of the house.
Each anxiety has a range 0 : 1 (probabilities of being anx-
ious) and simply taking the product would result in an anx-
iety lower than the maximum. Ideally two device anxieties
of say 0.5 should result in an overall anxiety much higher,
say 0.75. Currently we take the maximum anxiety as the
overall.

5 Experimental Environment

To explore these and other ideas, we developed a Smart
House laboratory environment. The laboratory is populated
with a number of devices to simulate those that would be
found in a typical house. The house has several rooms:
a kitchen, lounge and bedroom. The kitchen includes a
small electric stove, microwave oven, fridge, dishwasher,
cupboards, a kitchen table and chair. Each device is aug-
mented with sensors to detect interaction by the occupant.
Reed switches detect the opening and closing of doors (e.g.
the fridge, dishwasher, microwave, cupboards), while pres-
sure mats detect the proximity of the occupant to certain key
locations (doorways, chairs). For hazardous devices, pres-
sure mats are positioned on the floor in front of each device
to detect interaction by the occupant.

6 Experiments and Results

To evaluate our model, we trained the system on 30 ex-
amples of a breakfast sequence with variation in the events,
their duration and ordering. Note breakfast was accelerated
to reduce the time to acquire the data. For testing, normal
and abnormal sequences are presented and we examine how
the anxiety changes over time.

Figure 2 shows a typical result. The event sequence is
shown in the lower time-line. In the scenario, the occupant
takes an egg from the fridge and places it in a pot on the
stove. State stove:hazard becomes true when the occu-
pant turns on the stove. While interacting with the stove, the
state stove:mat is true, so stove:unattended does
not become true until the occupant steps off the mat and be-
gins another activity. In this scenario, the occupant uses the
toaster, collects the egg from the stove and sits at the dining
table to eat breakfast. Once the stove becomes unattended,
the system computes the anxiety which increases over time
as shown in the upper plot in Figure 2. In the absence of
events, the anxiety level increases monotonically according
to P stove

SID (t0, t) (see Figure 4, top). It is modified by the
occupant performing actions that are normally associated
with the breakfast scenario. This results in a temporary re-
duction in the anxiety level following expected events. The

4

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05) 

0730-3157/05 $20.00 © 2005 IEEE 



 0  20  40  60  80  100  120  140  160  180

 diningChair/mat

 fridge/hazard
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 fridge/open
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 stove/mat

 stove/ring2

 stove/unattended

 toaster/active

 0  20  40  60  80  100  120  140  160  180

test/test01.ev

stove/unattended no events
stove/unattended

fridge/unattended no events
fridge/unattended

Figure 2. Anxieties for an example of normal
breakfast behaviour (using all events).

degree of reduction is determined by the probability of the

event P
stove,dj

IE . The effect tapers off over time, accord-
ing to the learned distribution of the lag between the event

and the stove being attended P
stove,dj

IID (t0, t) (see Figure 4,
bottom).

 0  50  100  150  200  250

 diningChair/mat

 fridge/hazard

 fridge/mat

 fridge/open

 stove/hazard

 stove/mat

 stove/ring2

 stove/unattended

 toaster/active

 0  50  100  150  200  250

test/test02.ev

stove/unattended no events
stove/unattended

fridge/unattended no events
fridge/unattended

Figure 3. Anxieties for an example of abnor-
mal breakfast behaviour (using all events).

Figure 3 shows a hazardous scenario. Here, the time-
line is as before, but the occupant neglects to turn off the
stove. Sitting in the dining chair is an event that some-
times occurs when the stove is in use, but the system
knows the distribution of the time lag between this event
(diningChair/mat) and the stove being attended. Af-
ter this time has elapsed, the contribution of this event ex-
pires and the anxiety reaches its maximal level of 1.0. If the
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stove/unattended-toaster/active-true
stove/unattended-stove/mat-true

stove/unattended-cabinetSW/rightOpen-true
stove/unattended-cabinetSW/open-true
stove/unattended-diningChair/mat-true

stove/unattended-fridge/open-true
stove/unattended-fridge/mat-true
fridge/unattended-fridge/mat-true

Figure 4. Cumulative distribution function
P stove

SID (t0, t) for the stove (top), and for inter-

action with other devices P
stove,dj

IID (t0, t) while
the stove is in hazard (bottom).

stove is running for a long time, it is normal for the occupant
to periodically attend to it. This pattern is shown in Fig-
ure 5. At approximately 90 seconds, the occupant returns to
check the stove, which resets the stove:unattended
state and hence resets the anxiety level.

In the presence of many events, the reduction in the anxi-
ety level can be significant. We explored two models which
vary the influence of events (see Section 4 and equations 2
and 3). Figure 6 shows the results for the two models. In
the upper plot, all events are considered. In the lower plot,
only the most recent event is considered. As expected using
only the latest event results in a higher anxiety as including
all events reduces the anxiety for each event considered.

7 Conclusions

This paper has described an emotive solution to decid-
ing if a device, house and ultimately the occupant are in
abnormal states. Anxiety is used as a measure of normal-
ity and represented with a number of statistical models that
are combined together to integrate interactions with haz-
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test/test03.ev
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Figure 5. Anxieties for the stove managed by
repeated attention.

ardous devices (stove, fridge) as well as other passive de-
vices (doors, chairs) to compute anxiety as it varies with
time. The complexity of interactions of all devices has been
reduced by considering each hazardous device individually
and using interactions with other devices to determine anx-
iety. Looking at combinations of the anxieties of differ-
ent devices and rigid sequencing of activities and events is
avoided. Currently the anxiety for the house is simply taken
as the maximum for the active devices.

Results show that for some reasonably well defined sce-
narios in the kitchen, the anxiety model produces meaning-
ful results. Importantly all the statistical models used are
learnt from real scenarios which are assumed to be normal.
The important issue is to acquire enough data to be reliable.
Given that we are using a pessimistic approach to the mon-
itoring process, we will learn the parameters incrementally
for a particular occupant and house interactively by asking
the occupant if things are normal for each time a high anxi-
ety is detected.

The next objective of this research is to run the methods
for a large time period in a real environment. To this end
we have been capturing video of people in kitchens and will
analyse to get the sequence of events for normal behaviour.
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