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Abstract. Background elimination models are widely used in motion tracking
systems. Our aim is to develop a system that performs reliably under adverse
lighting conditions. In particular, this includes indoor scenes lit partly or entirely
by diffuse natural light. We present a modified “median value” model in which
the detection threshold adapts to global changes in illumination. The responses of
several models are compared, demonstrating the effectiveness of the new model.

1 Introduction

The focus of this paper is on developing a robust foreground extraction module to be
used in conjunction with tracking systems for tracking people in their home. These
indoor environments do not have the controlled indoor conditions of office spaces or
laboratories. By making long term recordings within a home we note that consideration
must be given to the following factors:

— lllumination is spatially variable. A significant amount of the lighting is natural
light, diffusing into the space via windows, doors, and skylights. The light sources
are often very bright (ie. sunlight), although the overall level of illumination may
be low. There is thus a large dynamic range in intensity which can lead to saturation
in the images.

— Light sources may not be overhead. Most windows are close to ground level mean-
ing that many objects are lit from the side. Objects (eg. people) may obscure light
sources, casting broad shadows that are disconnected from the obscuring object.

— lllumination is temporally variable. Over the course of a day lighting is influenced
by changes in external conditions due to clouds, shadows, and reflections. It is
influenced by internal events such as the opening and closing of doors, windows
and curtains, and the switching on and off of internal lighting.

A first step in motion analysis is to model the normal variation of the background
of a scene. Two current approaches are to use a mixture of Gaussian distrikiutions [1]
or the median value over a short time windaw [2]. Both approaches have problems in
situations where illumination changes rapidly. Adaptation in the mixture of Gaussians
model is determined by a learning rate. To perform well under varying illumination, the
number of distributiongs and the learning rata must be adapted to match the time
scale of the input, which is not knovapriori. The median value approach uses a single



global threshold for foreground extraction. This is insufficient to deal with relatively
long-term trends in the illumination level. An efficient alternative the Gaussian mixture
model is to use clusters with varying weights$ [3] but these are subject to the same
considerations with respect to learning rate.

This paper seeks to address the issues with these existing background elimination
models. We use a median value model with an adaptive threshold to improve the quality
of extracted foreground images. As part of this investigation a motion tracking system
was implemented, and the performance of different background models was compared.
This paper presents some results from this process, and describes an improved back-
ground elimination algorithm.

2 Background Elimination

The Gaussian mixture (GM) modéll[1] maintains a number of Gaussian distributions
K for each pixel. These are characterised by a measmriancesr and weightv which
are adjusted over time as new data becomes available. The rate at which the models
adapt is determined by, thelearning rate Small values ofx make the model adapt
slowly, favouring historical evidence over new evidence. Large valuesoaiuse rapid
adaptation, but can also introduce additional problems. If the learning rate is too high,
the Gaussian models become too specific {/idecomes small) too quickly and the
background model becomes unstable as models are continually invalidated by new evi-
dence. In practice it is necessary to balanand K to cover the expected variation in
the background.

The median value (MV) model[2] maintains a $ebf N samples for each pixel.
The background model is the value of the pixel that minimises the distance to all other
pixels according to the-inf distancein the RGB colour space:

Distance(a,b) = maz(|la.c —b.c|]) ¢=R,G,B

A thresholdT;, is used to identify which image pixels are different from the back-
ground value, according to the same distance measure. This defines the image fore-
ground. As stated, this technique has a relatively short term memory. Within roughly
N/2 samples, any previous evidence is replaced by new evidence. That is, in response
to a step change in the input, the median value will have shifted to the new state. Cyclic
changes are handled if their period is less tharilypically, V is chosen to be a small
number (eg. 8). The complexity of updating the background mode(€2), but once
this is done, frames can be classified in constant time. Therefore, it is usual to sub-
sample the original input (eg. to one in 10 frames). In contrast, the cost of updating a
GM model isO(K) but the proportionality constant is higher due to the more complex
calculation. It is uncommon to use more than 4 or 5 distributions in real-time applica-
tions.

The SAKBOT system_[2] improves the stability of the MV background model by
incorporatingadaptivityandobject-level reasoningA background modeB; is main-
tained separate to the statistical background mdgfelForeground regions are clas-
sified as moving object, shadow, ghost, or ghost-shadow. The background model is
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Fig. 1. Mean illumination for an indoor scene over approximately 14.5 hours.

assigned the statistical background vaRjefor background, ghost, and ghost-shadow
regions, and the previous background valtje, for moving objects and their shadows.

In this way, objects moving through the scene do not disrupt the background model. An
adaptivity factor is included, adding; to the setS but weighting the distances used

for the median function by a factar,.

3 Response of models to illumination changes

Both GM and MV models perform well in conditions of near constant lighting. How-
ever, rapid illumination changes produce a large disparity between the current pixel
values and the background model. As a result, large areas of the image become classi-
fied as foreground. This interferes with object segmentation and tracking.

The problem arises from two sources. Firstly, under natural lighting external changes
(due to shadows, clouds) cause significant changes in indoor illumination. The magni-
tude of the change is generally greater in the corresponding outdoor scene. Secondly,
most cameras have an internal gain or aperture level that is adjusted to normalise the
overall brightness of the image. The presence of a temporary bright object can cause
the camera to suddenly change gain level.

Figure[1 shows the mean illumination for an indoor scene over approximniatély
hours. Mean illuminatior is defined as the average over all image pixels of:

V2 4+ b2+ g2/V3



wherer, g, andb are the values of the red, green and blue image channels. Most objects
in the scene are small compared to the image size, so object motion generally has a
small effect on mean illumination.

Over the course of a dafis influenced by changes in external conditions due to
clouds, shadows, and reflections. It is influenced by internal events such as the opening
and closing of doors, windows and curtains, and the switching on and off of internal
lighting. In addition, since lighting is not always overhead people can temporarily ob-
scure light sources (eg. by walking in front of windows).

Both GM and MV models eventually adapt to changed lighting conditions. The GM
model generally has a slower response time, but maintains multiple models of back-
ground state so can be more stable under repetitive changes. The MV model responds
relatively quickly (roughlyN/2 frames), but both models produce disrupted images
while adaptation takes place. As shown in the figure the fluctuation in illumination may
be 20 to 50% of the mean value. The time scale of the fluctuations varies from a few
seconds to a few minutes.

4 Adaptive median value model

To improve image quality of the MV model during adaptation, we employed a correc-
tion to the detection threshold, that adapts in response to global illumination changes.
The system works as follows:

The mean illuminatiod is computed for each image. The original modeél [2] main-
tains a histonys of N images. In addition, we maintain a histdiyof I for the previous
M = N/2images. The differenc® between the largest and smallest valuirap-
proximates the worst-case disparity between the current and historical median value
of 1. This valueD is scaled by a correction factef and added td’;, to correct for
differences due to shifts in mean illumination. This causes the detection thré§hold
to increase during periods of rapid change by an amount that is proportional to the
difference in mean illumination.

Figure[2 shows the performance of various background models in response to nat-
ural changes in illumination. In this scene, no objects are moving, so any foreground
pixels are due to artifacts of the background model. A measure of the disruption to
the image is the proportion of the total image area detected as foreground. Ideally, this
should be small. The figure shows values obtained by four background models working
on the same image sequence. The best performance is obtained by the MV model with
cf = 2. This peaks at only 6% (around frame 200 and 900), whereas all other models
peak at between 85 and 90%. The “fast” GM model=£ 0.1) adapts well to rapid
changes, and is significantly better than the “slow” GM modeK 0.01) over long
disturbances. Having less “inertia”, the MV models respond better to long disturbances.

Figure[3 shows the response to sudden illumination changes. In this experiment an
overhead light is turned on and off and a bright object (a white tray) is carried across the
room, inducing a step change in the camera gain of about 5%. There is also some vari-
ation in natural lighting. Foreground pixels are classified as object or shadow. Shadow
pixels are not included in the foreground area, so the overall performance of all mod-
els is better than the unclassified foreground values. Again, the adaptive MV model
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Fig. 2. Background elimination under natural illumination changes. Columns show two
different time periods. Rows show intensitynd correctiorD (top), GM performance
(centre) and MV performance (bottom). Scene has no moving objects. Foreground is
all non-background pixels.

(cf = 2) shows least disruption to the image. This time the “slow” GM model outper-
forms the “fast” GM model, illustrating that the performance of the GM model depends
on the match between model parameters and the input. In this scene there are moving
objects which is an additional source of perturbations of the background model.

Figure[4 shows the effect of a rapid change in illumination (here, a shift in cam-
era gain) on the background model. This occurs at frame 363 in the sequence shown
in Figure[3. Since the scene becomes rapidly darker, there is a large disparity between
the current frame and the background model. The background regions are shown in
white in the bottom 4 image rows. Foreground regions are classified as shadow (grey)
or object (black). An object moves from right to left, leaving a “ghost” in its initial
location. Importantly, changing the MV foreground thresh®ld does not adversely
affect the ability of the system to track objects moving in the scene. Again, the cor-
rected MV model shows the least disruption to image quality. In this case, a decrease in
illumination levels can be handled by normal shadow reduction technigues [4]. For an
increase in illumination, the shadow regions shown here would not be distinguishable
from foreground objects.
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Fig. 3. Background elimination under imposed illumination changes. Left column in-
cludes lighting change. Right column shows response to camera gain shift (frame
363). Rows show intensity and correctionD (top), GM performance (centre) and

MV performance (bottom). Scene includes moving objects. Foreground areas exclude
“shadow” pixels. See Figufg 4 for classified images.

5 Conclusion and Future Work

This paper describes the response of various background elimination models to adverse,
real-world lighting effects. Models are compared according to their ability to reject false
foreground objects under rapid illumination changes. An adaptive median value model
(MV) is described, which consistently performs better than for the uncorrected MV
model, and Gaussian mixture (GM) models.

The MV model is attractive because it is computationally less intensive than GM
models. MV has a global foreground threshdld Y which is easily adapted to lighting
changes, as we have presented here. It may be possible to similarly improve GM models
by perturbing the distribution means, although it is less clear over what time scales this
might be possible. The full SAKBOT modell[2] augments the MV statistical model
with feedback. As such, it becomes vulnerable to rapid changes, and we have not yet
studied the extent of this problem.

The adaptive MV model tends to suffer when rapid illumination changes are spa-
tially non-uniform. One possible solution to this problem is to compute separate cor-
rections for sub-regions of the original image. This is an area for future work.
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Fig. 4. Foreground (black) and shadow (grey) regions resulting from a camera gain
shift. Note that a significant proportion of foreground pixels are removed by shadow
reduction.
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